4.6 Article

New insights into the base catalyzed depolymerization of technical lignins: a systematic comparison

期刊

RSC ADVANCES
卷 13, 期 8, 页码 4898-4909

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2ra06998a

关键词

-

向作者/读者索取更多资源

This study presents a systematic investigation of base catalyzed depolymerization (BCD) of five technical lignins derived from different botanical origins and covering the main industrial pulping methods. The study quantifies and characterizes the two BCD fractions, lignin oil and lignin residue, and describes their properties under various BCD process conditions. The study provides valuable insights into the overall BCD process, highlighting important feedstock-dependent outcomes and contributing to the complete valorization of BCD-derived lignin streams.
A first systematic approach on the base catalyzed depolymerization (BCD) of five technical lignins derived from various botanical origins (herbaceous, hardwood and softwood) and covering the main three industrial pulping methods (soda, kraft and organosolv) is reported. This study provides a first of its kind in-depth quantification and structural characterization of two main BCD fractions namely lignin oil and lignin residue, describing the influence of the BCD process conditions. Depolymerization is evaluated in terms of lignin conversion, lignin oil yield, phenolic monomer selectivity and the production of lignin residue and char. Lignin oils were extensively characterized by size exclusion chromatography (SEC), GC-MS, GC-FID, C-13-NMR, HSQC NMR and elemental analysis. GC x GC-FID was used to identify and quantify distinct groups of monomeric compounds (methoxy phenols, phenols, dihydroxy-benzenes) in the lignin oil. The lignin oil yields (w/w) ranged from 20-31% with total monomer contents ranging from 48 to 57% w/w. SEC analysis indicated the presence of dimers/oligomers in the lignin oil, which through HSQC NMR analysis were confirmed to contain new, non-native interunit linkages. C-13 NMR analyses of the lignin oils suggest the presence of diaryl type linkages (i.e. aryl-aryl, aryl C-O) evidencing deconstruction and recombination of lignin fragments during BCD. Irrespective of the lignin source, a residue, often regarded as 'unreacted' residual lignin was the main product of BCD (43 to 70% w/w). Our study highlights that this residue has different structural properties and should not be considered as unreacted lignin, but rather as an alkali soluble condensed aromatic material. HSQC, DEPT-135, C-13, and P-31 NMR and SEC analyses confirm that the BCD residues are indeed more condensed, with increased phenolic hydroxyl content and lower molecular weights compared to all feed lignins. Subsequent BCD of solid residual fractions produced only low oil yields (6-9% w/w) with lower phenolic monomer yields (4% w/w) compared to original lignin, confirming the significantly more recalcitrant structure. Our study improves the overall understanding of the BCD process, highlights important feedstock-dependent outcomes and ultimately contributes to the complete valorization of BCD-derived lignin streams.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据