4.7 Article

Correlation between the Electrochemical Durability of Pt/C Catalysts and the Surface Functional Groups of the Support Carbon

期刊

ACS APPLIED ENERGY MATERIALS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.2c030301294

关键词

PEMFC; Pt; C; carbon black (CB); catalyst support; durability

向作者/读者索取更多资源

In this study, the effects of the catalyst support surface chemical/physical state on the electrochemical performance of Pt/C electrocatalysts were investigated. Pt/C electrocatalysts were synthesized using a microwave-assisted polyol process, and their structural characteristics and surface properties were characterized. The results showed that the Pt/C catalysts supported on a carbon with a higher surface oxygen content exhibited better durability, attributed to the presence of oxygen functional groups that inhibit Ostwald ripening to some extent.
Herein, we report the effects of the catalyst support surface chemical/physical state of commercially available high-surface-area carbons on the electrochemical performance of Pt/C electrocatalysts synthesized using carbons as the support for platinum nanoparticles (Pt-NPs). A series of Pt/C electrocatalysts were synthesized through a microwave-assisted polyol process. The support carbons and the Pt/C catalysts were characterized for their structural characteristics including crystallinity, microstructure (morphology and particle size distribution), physical surface area, porosity, thermal behavior, and surface chemical state. Evaluation of the electrocatalytic performances and durability parameters of the Pt/C catalysts was performed through cyclic voltammetry and an accelerated stress test (AST). The results showed that the support carbons have similar physical properties except for the amounts and types of oxygen-containing surface functional groups. The Pt/C catalysts supported on the carbon with a higher surface oxygen content were found more durable during the AST, as compared to their corresponding counterparts supported on the carbon with a lower surface oxygen content. This was attributed to the presence of oxygen functional groups that may function as the active sites for the nucleation of new Pt-NPs, hence inhibiting Ostwald ripening to some extent. This study provides valuable catalyst support selection criteria and synthesis parameters at different pressures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据