4.6 Article

Tuning the mechanoresponsive luminescence of rotaxane mechanophores by varying the stopper size

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 11, 期 12, 页码 3949-3955

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3tc00330b

关键词

-

向作者/读者索取更多资源

In this study, the correlation between the mechanoresponsive luminescent behavior of rotaxane mechanophores and the size of the stopper used in the mechanophores was investigated. It was found that larger stoppers prevent the detachment of the ring molecule, resulting in reversible emission intensity changes, while smaller stoppers lead to irreversible emission intensity changes. Molecular dynamics simulations confirmed these experimental observations. This study demonstrates the ability to create polymers with a wide range of mechanoresponsive luminescence behaviors by varying the size of the stopper.
Mechanochromic mechanophores are useful molecular mechano-probes that can visualize forces in polymeric materials. Here, we report detailed studies on the correlation between the mechanoresponsive luminescent behaviour of rotaxane mechanophores and the size of the stopper used in the mechanophores. Five different stoppers were introduced at one end of the axle molecule, which featured an electron-deficient quencher group at its center. The same ring molecule carrying an electron-rich fluorophore was used in all rotaxanes. In solution, the blue fluorescence of the emitter is almost completely quenched for all rotaxanes, on account of charge-transfer interactions between the fluorophore and quencher. The mechanoresponsive character of these motifs was investigated by incorporating them into linear segmented polyurethanes (PUs). Sufficiently bulky stoppers prevent the ring of rotaxane from dethreading, and this leads to a fully reversible change of the emission intensity when films of the rotaxane-containing PUs are stretched and relaxed. This response is caused by the force-induced shuttling of the emitter-containing cycle away from and back to the quencher, without any breakage of the interlocked structure or dethreading. By contrast, small stoppers allow the rings to dethread from the axles of the rotaxanes, and the fluorescence turn-on triggered by deformation becomes fully or partially irreversible. In this case, the fraction of dethreaded rings and the residual fluorescence intensity gradually increases as samples are repeatedly strained. Molecular dynamics simulations show that the energy required for dethreading depends strongly on the size of the stopper, and confirm our experimental observations. Our data show that the response of rotaxane mechanophores can be easily varied between fully reversible and irreversible, and this allows one to create polymers with a broad range of mechanoresponsive luminescence behaviours.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据