4.7 Article

Ultrafast Self-propelling directionally water transporting wood via cell wall reshaping for water manipulation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 455, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.140563

关键词

Wood; Cell wall reshaping; Hierarchical structures; Directional liquid transport; Water management

向作者/读者索取更多资源

By retaining the native cellulose microfibril structure within wood cell walls and controlling their shrinkage, a self-propelling directionally water transporting wood (SDTW) was constructed, which exhibited high water transport speed and absorption rate and was used for water manipulation applications. The SDTW had mechanical strength, dimensional stability, environmental durability, scalability, and sustainability.
Water-transport based on biomimetic self-propelled directional water transport materials have attracted wide attention but are limited by low transport speed, costly and complicated preparation, and scaling difficulty. By retaining native cellulose microfibril structure within wood cell walls and their controlled shrinkage, we con-structed a self-propelling directionally water transporting wood (SDTW) by reshaping the cell wall to generate robust capillary forces due to aligned longitudinal hierarchical wood cell structures. Hierarchical structures containing directional parallel macro-and micro-sized ridge-groove structures and creating nano-voids are fabricated. They are further intactly fixed after reaction with maleic anhydride to improve the dimensional stability and environmental durability without changing the hydrophilicity on surface. Resulting SDTW exhibited an ultrafast water transport speed of 200.4 mm/s (similar to 260 % of Nepenthes alata showing a fast speed of 78 mm/s as a native structure) and water absorbing rate of 1.15 x 10(5) L/m(2)/h (over 4200-fold higher than that of natural wood). With these ultrafast water transport characters, SDTW was used as water manipulating systems for fast bottom to up transportation of liquid water at a rate of 193.5 mm/s, and as high fog harvesting system with an efficiency of 10.6 g/cm(2)/h. With its facility, durability, scalability, and sustainability, the SDTW demonstrates a new class of sustainable wood-based materials for practical water manipulation applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据