4.2 Article

Effect of gravel content on soil water retention characteristics and thermal capacity of sandy and silty soils

期刊

出版社

SCIENDO
DOI: 10.2478/johh-2023-0001

关键词

Pore size distribution; Soil water retention curve; Thermal capacity; PDI model

向作者/读者索取更多资源

The presence of gravel in soils has an impact on the porosity, pore connectivity, pore size distribution and interfaces of the soil matrix. This study investigates the effect of relative volume of gravel on various properties of sandy and silty soils. The results show that the water retention curves of these soils can be well predicted by a weighting factor based on the relative volume of rock fragments.
The presence of gravel in soils modifies the porosity, pore connectivity and pore size distribution in the soil matrix as well as the soil matrix-gravel interfaces. The aim of the present study is to investigate the effect of relative volume of gravel in samples with gravel mass fractions of 5,10, 20 wt% and varying bulk densities (1.3, 1.45, 1.55, 1.60, 1.65 g cm(-3)) on (i) total porosity, field capacity, plant available water holding capacity, (ii) pore size distribution and (iii) thermal capacity of repacked sandy and silty soils. The focus of the study was to determine if laboratory measured soil water retention curves considering (i), (ii), and (iii) can be predicted by a gravel-based weighting factor, R-v, considering comprehensive significance tests. The sand-gravel mixtures show a decrease in the volume fractions of macropores and wide cores pores with an increase in the gravel contents, while the silt-gravel mixtures show an opposite trend. The root mean square errors (RMSE) between measured and fitted volumetric water contents, theta, between 0.006 and 0.0352 and between 0.002 and 0.004 for R-v-weighted volumetric water contents indicate that the van Genuchten-based Peters-Durner-Iden (PDI) model is appropriate for fitting. The soil water retention curves with mass gravel contents of up to 10 wt% for silt and 20 wt% for sand can be well predicted by weighting factors (relative volume of rock fragments) in the range between 0.045 and 0.058 for silt, and between 0.112 and 0.119 for sand. The results also indicate a decrease in the Rv-weighted saturated, c(vsat), and dry, c(vdry), thermal capacity with an increase in the gravel contents for both soils. Further investigations are needed to examine if and whether measured sand- and silt-gravel mixtures with mass gravel contents below 10 % or rather 20 % can be predicted with a weighting factor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据