4.7 Article

Impact of interfacial rheology on finger tip splitting

期刊

PHYSICAL REVIEW E
卷 107, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.107.015103

关键词

-

向作者/读者索取更多资源

In this study, the influence of interfacial rheology on the morphology of viscous fingering in Hele-Shaw cells was investigated. The results showed that interfacial rheology, despite stabilizing viscous fingering at the linear regime, actually promotes finger tip widening and enhanced finger tip-splitting events in the early nonlinear stages.
Fluid-fluid interfaces, laden with polymers, surfactants, lipid bilayers, proteins, solid particles, or other surface-active agents, often exhibit a rheologically complex response to deformations. Despite its academic and practical relevance to fluid dynamics and various other fields of research, the role of interfacial rheology in viscous fingering remains fairly underexplored. A noteworthy exception is the work by Li and Manikantan [Phys. Rev. Fluids 6, 074001 (2021)], who used linear stability analysis to show that surface rheological stresses act to stabilize the development of radial viscous fingering at the linear regime. In this paper, we perform a perturbative, second-order mode-coupling analysis of the system and investigate the influence of interfacial rheology on the morphology of the fingering structures at early nonlinear stages of the dynamics. In particular, we focus on understanding how interfacial rheology impacts the emblematic finger tip-widening and finger tip-splitting phenomena that take place in radial viscous fingering in Hele-Shaw cells. We describe the viscous Newtonian fluid-fluid interface by using a Boussinesq-Scriven model, and derive a generalized Young-Laplace pressure jump condition at the fluid-fluid interface. In this framing, we go beyond the purely linear description and use Darcy's law to obtain a perturbative mode-coupling differential equation which describes the time evolution of the perturbation amplitudes, accurate to second order. Our early nonlinear mode-coupling results indicate that regardless of their stabilizing action at the linear regime, interfacial rheology effects favor finger tip widening, leading to the occurrence of enhanced finger tip-splitting events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据