4.7 Article

Tomato Leaf Disease Classification via Compact Convolutional Neural Networks with Transfer Learning and Feature Selection

期刊

HORTICULTURAE
卷 9, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/horticulturae9020149

关键词

smart agriculture; precision agriculture; deep learning; tomato leaf disease classification; feature selection; transfer learning

向作者/读者索取更多资源

Tomatoes are valuable vegetables and an economic pillar for many countries. Automatic identification of tomato leaf diseases using deep learning models has been widely studied, but existing methods suffer from high computational complexity and large dimensionality. This study proposes a pipeline that utilizes compact convolutional neural networks and transfer learning for condensed and high-level representation. The pipeline also applies a hybrid feature selection approach to reduce dimensions and achieves high accuracy in tomato leaf disease identification.
Tomatoes are one of the world's greatest valuable vegetables and are regarded as the economic pillar of numerous countries. Nevertheless, these harvests remain susceptible to a variety of illnesses which can reduce and destroy the generation of healthy crops, making early and precise identification of these diseases critical. Therefore, in recent years, numerous studies have utilized deep learning (DL) models for automatic tomato leaf illness identification. However, many of these methods are based on a single DL architecture that needs a high computational ability to update these hyperparameters leading to a rise in the classification complexity. In addition, they extracted large dimensions from these networks which added to the classification complication. Therefore, this study proposes a pipeline for the automatic identification of tomato leaf diseases utilizing three compact convolutional neural networks (CNNs). It employs transfer learning to retrieve deep features out of the final fully connected layer of the CNNs for more condensed and high-level representation. Next, it merges features from the three CNNs to benefit from every CNN structure. Subsequently, it applies a hybrid feature selection approach to select and generate a comprehensive feature set of lower dimensions. Six classifiers are utilized in the tomato leaf illnesses identification procedure. The results indicate that the K-nearest neighbor and support vector machine have attained the highest accuracy of 99.92% and 99.90% using 22 and 24 features only. The experimental results of the proposed pipeline are also compared with previous research studies for tomato leaf diseases classification which verified its competing capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据