4.7 Article

Crucial Role of Lysine-Specific Histone Demethylase 1 in RANKL-Mediated Osteoclast Differentiation

期刊

出版社

MDPI
DOI: 10.3390/ijms24043605

关键词

osteoporosis; osteoclast differentiation; LSD1; small molecule

向作者/读者索取更多资源

This study identifies GSK2879552, a LSD1 inhibitor, as a potential treatment for osteoporosis by inhibiting osteoclast differentiation. LSD1 inhibitors effectively inhibit RANKL-induced osteoclastogenesis and prevent the expression of osteoclast-specific genes. Inhibition of LSD1 activities may be a potential target for preventing bone diseases characterized by excessive osteoclast activities.
Epigenetic regulators are involved in osteoclast differentiation. This study proposes that the inhibitors of epigenetic regulators could be effective in the treatment of osteoporosis. This study identified GSK2879552, a lysine-specific histone demethylase 1 (LSD1) inhibitor, as a candidate for the treatment of osteoporosis from epigenetic modulator inhibitors. We investigate the function of LSD1 during RANKL-induced osteoclast formation. LSD1 small-molecule inhibitors effectively inhibit the RANKL-induced osteoclast differentiation in a dose-dependent manner. LSD1 gene knockout in macrophage cell line Raw 264.7 also inhibits RANKL-mediated osteoclastogenesis. LSD1-inhibitor-treated primary macrophage cells and LSD1 gene knockout Raw 264.7 cells failed to show actin ring formation. LSD1 inhibitors prevent the expression of RANKL-induced osteoclast-specific genes. They also downregulated the protein expression of osteoclast-related markers in osteoclastogeneses, such as Cathepsin K, c-Src, and NFATc1. Although LSD1 inhibitors were shown to reduce the in vitro demethylation activity of LSD1, they did not modulate the methylation of Histone 3 K4 and K9 during osteoclastogenesis. The ovariectomy (OVX)-induced osteoporosis model revealed that GSK2879552 slightly restores OVX-induced cortical bone loss. LSD1 can be employed as a positive regulator to promote osteoclast formation. Hence, inhibition of LSD1 activities is a potential target for preventing bone diseases characterized by excessive osteoclast activities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据