4.2 Article

Dismantling the information flow in complex interconnected systems

期刊

PHYSICAL REVIEW RESEARCH
卷 5, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.5.013084

关键词

-

向作者/读者索取更多资源

Microscopic structural damage, such as lesions in neural systems or disruptions in urban transportation networks, can impair the dynamics crucial for systems' functionality, such as electrochemical signals or human flows, or any other type of information exchange, respectively, at larger topological scales. Yet, this approach fails to capture how damage hinders the propagation of information across scales, since system function can be degraded even in absence of fragmentation-e.g., pathological yet structurally integrated human brain. Using a damaging protocol explicitly accounting for flow dynamics, we analyze synthetic and empirical systems, from biological to infrastructural ones, and show that it is possible to drive the system towards functional fragmentation before full structural disintegration.
Microscopic structural damage, such as lesions in neural systems or disruptions in urban transportation networks, can impair the dynamics crucial for systems' functionality, such as electrochemical signals or human flows, or any other type of information exchange, respectively, at larger topological scales. Damage is usually modeled by progressive removal of components or connections and, consequently, systems' robustness is assessed in terms of how fast their structure fragments into disconnected subsystems. Yet, this approach fails to capture how damage hinders the propagation of information across scales, since system function can be degraded even in absence of fragmentation-e.g., pathological yet structurally integrated human brain. Here, we probe the response to damage of dynamical processes on the top of complex networks, to study how such an information flow is affected. We find that removal of nodes central for network connectivity might have insignificant effects, challenging the traditional assumption that structural metrics alone are sufficient to gain insights about how complex systems operate. Using a damaging protocol explicitly accounting for flow dynamics, we analyze synthetic and empirical systems, from biological to infrastructural ones, and show that it is possible to drive the system towards functional fragmentation before full structural disintegration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据