4.6 Article

Engineering the surface of titanium to improve its bioactivity and antibacterial activity through a multi-functional coating approach

期刊

NEW JOURNAL OF CHEMISTRY
卷 47, 期 12, 页码 5843-5862

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nj04485d

关键词

-

向作者/读者索取更多资源

This study developed multi-functional coatings on titanium for orthopaedic implant applications. The coatings were created by anodizing TiO2 nanotubes and dip coating them with various polymer matrices, including bioglass, Ag doped bioglass, graphene oxide, and reduced graphene oxide. The coatings were evaluated for their structural characteristics, bioactivity, and antibacterial activity. The BG-AgrGO/PCL composite coating showed high antibacterial activity, slow release of antibiotics, and adequate bioactivity, making it a potential candidate for biomedical implant materials.
The present study reports the development of multi-functional coatings on titanium for orthopaedic implant applications. The multi-functional coating approach involves the development of TiO2 nanotubes by anodization followed by dip coating of polycaprolactone (PCL) in which the polymer matrix is incorporated with bioglass (BG), Ag doped bioglass (AgBG), Ag doped bioglass-graphene oxide (AgBG-GO), Ag doped bioglass-reduced graphene oxide (AgBG-rGO) and bioglass-silver functionalized reduced graphene oxide (BG-AgrGO). The structural and morphological characteristics, bioactivity and antibacterial activity of the multi-functional coatings were evaluated. The AgBG-GO/PCL and BG-AgrGO/PCL composite coatings exhibit better antibacterial activity than the AgBG/PCL and AgBG-rGO/PCL composite coatings. Among them, the BG-AgrGO/PCL composite coating with higher loading and slow release of silver ions is suitable for long term antibiotic delivery. The BG-AgrGO/PCL composite coating shows a Ca/P ratio of 1.53. The formation of Ca-deficient apatite of this composite coating suggests that the AgrGO did not hinder the bioactivity. Further, rGO nanosheets enable a higher loading of Ag and the persistence of 0.98 at% of Ag even after 10 days of immersion reveals sustained release of antibiotics in the physiological medium. The retention of coarse BG particles and the lower number of oxygen functional groups of rGO and AgrGO could have limited the dissolution of BG particles in the AgBG-rGO/PCL and BG-AgrGO/PCL composite coatings even after 14 days of immersion in HBSS. With a higher loading, slow release of antibiotics and having adequate bioactivity, the BG-AgrGO/PCL composite coating can be considered as a potential candidate for biomedical implant materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据