4.2 Article

Entanglement witnesses in the XY chain: Thermal equilibrium and postquench nonequilibrium states

期刊

PHYSICAL REVIEW RESEARCH
卷 5, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.5.013158

关键词

-

向作者/读者索取更多资源

We use entanglement witnesses to detect and analyze entanglement in the XY chain at thermal equilibrium. Different types of entanglement witnesses, based on the Hamiltonian and entanglement negativity, are considered and tested in both infinite and finite systems. The results show the efficiency of energy-based entanglement witnesses in detecting nearest-neighbor entanglement in spin chains. Furthermore, the usefulness of our method is demonstrated analytically by determining the domains in parameter space corresponding to entangled postquench states detected by the energy-based witness.
We use entanglement witnesses to detect entanglement in the XY chain in thermal equilibrium and determine the temperature bound below which the state is detected as entangled. We consider the entanglement witness based on the Hamiltonian. Such a witness detects a state as entangled if its energy is smaller than the energy of separable states. We also consider a family of entanglement witnesses related to the entanglement negativity of the state. We test the witnesses in infinite and finite systems. We study how the temperature bounds obtained are influenced by a quantum phase transition or a disorder line in the ground state. Very strong finite-size corrections are observed in the ordered phase due to the presence of a quasidegenerate excitation. We also study the postquench states in the thermodynamic limit after a quench when the parameters of the Hamiltonian are changed suddenly. In the case of the Ising model, we find that the mixed postquench state is detected as entangled by the two methods if the parameters of the Hamiltonian before and after the quench are close to each other. We find that the two witnesses give qualitatively similar results, showing that energy-based entanglement witnesses are efficient in detecting the nearest-neighbor entanglement in spin chains in various circumstances. For other XY models, we find that the negativity-based witnesses also detect states in some parameter regions where the energy-based witness does not, in particular, if the quench is performed from the paramagnetic phase to the ferromagnetic phase and vice versa. The domains in parameter space corresponding to postquench states detected as entangled by the energy-based witness have been determined analytically, which stresses further the utility of our method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据