4.8 Article

Electrosynthesis of Au nanocluster embedded conductive polymer films at soft interfaces using dithiafulvenyl-functionalized pyrene

期刊

NANOSCALE
卷 15, 期 12, 页码 5834-5842

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nr06519c

关键词

-

向作者/读者索取更多资源

In this study, highly reproducible electrogeneration of low dispersity Au nanocluster embedded ultra-thin conductive polymer films was achieved at a micro liquid|liquid interface. The miniaturized reaction facilitated external, potential control and limited the reaction pathway.
Nanoparticle (NP) embedded conductive polymer films are desirable platforms for electrocatalysis as well as biomedical and analytical applications. Increased catalytic and analytical performance is accompanied by concomitant decreases in NP size. Herein, highly reproducible electrogeneration of low dispersity Au nanocluster embedded ultra-thin (similar to 2 nm) conductive polymer films at a micro liquid|liquid interface is demonstrated. Confinement at a micropipette tip facilitates a heterogeneous electron transfer process across the interface between two immiscible electrolyte solutions (ITIES), between KAuCl4(aq) and a dithiafulvenyl-substituted pyrene monomer, 4,5-didecoxy-1,8-bis(dithiafulven-6-yl)pyrene (bis(DTF)pyrene), in oil, i.e., a w|o interface. At a large ITIES the reaction is spontaneous, rapid, and proceeds via transfer of AuCl4- to the oil phase, followed by homogeneous electron transfer generating uncontrolled polymer growth with larger (similar to 50 nm) Au nanoparticles (NPs). Thus, miniaturization facilitates external, potential control and limits the reaction pathway. Atomic (AFM) and Kelvin probe force microscopies (KPFM) imaged the topography and work function distribution of the as-prepared films. The latter was linked to nanocluster distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据