4.6 Article

LiFePO4/C twin microspheres as cathode materials with enhanced electrochemical performance

期刊

RSC ADVANCES
卷 13, 期 10, 页码 6983-6992

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ra00183k

关键词

-

向作者/读者索取更多资源

Self-assembled LiFePO4/C twin microspheres are synthesized by a hydrothermal method using a mixed solution of phosphoric acid and phytic acid. The twin microspheres have a hierarchical structure composed of primary nano-sized capsule-like particles. The presence of a uniform thin carbon layer on the particle surface improves charge transport capacity and the channel between the particles facilitates electrolyte infiltration.
Self-assembled lithium iron phosphate (LiFePO4) with tunable microstructure is an effective way to improve the electrochemical performance of cathode materials for lithium ion batteries. Herein, self-assembled LiFePO4/C twin microspheres are synthesized by a hydrothermal method using a mixed solution of phosphoric acid and phytic acid as the phosphorus source. The twin microspheres are hierarchical structures composed of primary nano-sized capsule-like particles (about 100 nm in diameter and 200 nm in length). The uniform thin carbon layer on the surface of the particles improves the charge transport capacity. The channel between the particles facilitates the electrolyte infiltration, and the high electrolyte accessibility enables the electrode material to obtain excellent ion transport. The optimal LiFePO4/C-60 exhibits excellent rate performance with discharge capacity of 156.3 mA h g(-1) and 118.5 mA h g(-1) respectively at 0.2C and 10C, and low temperature performances with discharge capacity of 90.67 mA h g(-1) and 66.7 mA h g(-1) at -15 degrees C and -25 degrees C, respectively. This research may provide a new pathway to improve the performance of LiFePO4 by tuning the micro-structures by adjusting the relative content of phosphoric acid and phytic acid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据