4.8 Article

Pressure-induced room-temperature phosphorescence enhancement based on purely organic molecules with a folded geometry

期刊

CHEMICAL SCIENCE
卷 14, 期 10, 页码 2640-2645

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3sc00172e

关键词

-

向作者/读者索取更多资源

The pressure-dependent luminescence behavior of purely organic compounds is an important topic in the field of stimulus-responsive smart materials. This study filled in the gap regarding pressure-dependent room-temperature phosphorescence (RTP) of purely organic compounds by investigating the model molecule selenanthrene (SeAN) with a folded geometry. It discovered a unique phenomenon of pressure-induced RTP enhancement in an SeAN crystal, along with an underlying mechanism involving folding-induced spin-orbit coupling enhancement. In addition, pressure-induced RTP enhancement was observed in an analog of SeAN, which exhibited white-light emission.
The pressure-dependent luminescence behavior of purely organic compounds is an important topic in the field of stimulus-responsive smart materials. However, the relevant studies are mainly limited to the investigation of fluorescence properties, while room-temperature phosphorescence (RTP) of purely organic compounds has not been investigated. Here, we filled in this gap regarding pressure-dependent RTP by using a model molecule selenanthrene (SeAN) with a folded geometry. For the first time to the best of our knowledge, a unique phenomenon involving pressure-induced RTP enhancement was discovered in an SeAN crystal, and an underlying mechanism involving folding-induced spin-orbit coupling enhancement was revealed. Pressure-induced RTP enhancement was also observed in an analog of SeAN also showing a folded geometry, but in this case yielded a white-light emission that is very rare in purely organic RTP-displaying materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据