4.6 Article

Dynamic Tuning of Plasmonic Hot-Spot Generation through Cilia-Inspired Magnetic Actuators

期刊

ADVANCED INTELLIGENT SYSTEMS
卷 5, 期 6, 页码 -

出版社

WILEY
DOI: 10.1002/aisy.202200420

关键词

magnetic actuators; plasmonic-engineering; soft robotics; surface-enhanced Raman spectroscopy (SERS)

向作者/读者索取更多资源

By decorating plasmonic nanoparticles on magnetic actuators, we demonstrate a new soft actuator platform that can generate reversible and tunable hot-spots in millimeter-sized areas via bending motion. The hot-spot formation is shown to be reversible and adjustable, with Raman signal enhancements of up to approximately 120 folds compared to the unactuated platforms. The accessible electromagnetic field magnification in the platform can be manipulated by controlling magnetic field strength. Additionally, a centipede-inspired robot is fabricated and used for sample collection/analysis in a target environment.
Soft actuators that draw inspiration from nature are powerful and versatile tools for both technological applications and fundamental research, yet their use in hot-spot engineering is very limited. Conventional hot-spot engineering methods still suffer from complexity, high process cost, and static generation of hot-spots, thus, underperforming particularly in the application side. Herein, we demonstrate a strategy based on plasmonic nanoparticles decorated cilia-inspired magnetic actuators that enable highly accessible millimeter-sized hot-spot generation via bending motion under a magnetic field. The hot-spot formation is shown to be reversible and tunable, and leads to excellent Raman signal enhancements of up to approximate to 120 folds compared to the unactuated platforms. Accessible electromagnetic field magnification in the platforms can be manipulated by controlling magnetic field strength, which is further supported by finite difference time domain (FDTD) simulations. As a proof-of-concept demonstration, a centipede-inspired robot is fabricated and used for sample collection/analysis in a target environment. Our results demonstrate an effective strategy in soft actuator platforms for reversible and tunable large-area hot-spot formation, which provides a promising guidance toward studying the fundamentals of hot-spot generation and advancing real-life plasmonic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据