4.7 Article

Copper toxicity leads to accumulation of free amino acids and polyphenols in Phaeodactylum tricornutum diatoms

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 30, 期 17, 页码 51261-51270

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-023-25939-0

关键词

Amino acid; Polyphenol; Microalgae; Antioxidant activity; Copper toxicity; Phaeodactylum tricornutum

向作者/读者索取更多资源

This study focuses on the effect of lethal and sub-lethal copper concentrations on the production of free amino acids and polyphenols in the marine diatom Phaeodactylum tricornutum. The results show that under lethal concentrations of copper, there is a significant increase in the production of free amino acids and polyphenols, indicating their role in protective mechanisms against copper toxicity.
This work is focused on the effect of lethal and sub-lethal copper (Cu) concentrations on the free amino acid and polyphenol production by the marine diatom Phaeodactylum tricornutum (P. tricornutum) after 12, 18, and 21 days of exposure. The concentrations of 10 amino acids (arginine, aspartic acid, glutamic acid, histidine, lysine, methionine, proline, valine, isoleucine, and phenylalanine) and 10 polyphenols (gallic acid, protocatechuic acid, p-coumaric acid, ferulic acid, catechin, vanillic acid, epicatechin syringic acid, rutin, and gentisic acid) were measured by RP-HPLC. Under lethal doses of Cu, free amino acids reached levels significantly higher than those in the control cells (up to 21.9 times higher), where histidine and methionine showed the highest increases (up to 37.4 and 65.8 times higher, respectively). The total phenolic content also increased up to 11.3 and 5.59 times higher compared to the reference cells, showing gallic acid the highest increase (45.8 times greater). The antioxidant activities of cells exposed to Cu were also enhanced with increasing doses of Cu(II). They were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging ability (RSA), cupric ion reducing antioxidant capacity (CUPRAC), and ferric reducing antioxidant power (FRAP) assays. Malonaldehyde (MDA) exhibited the same tendency: cells grown at the highest lethal Cu concentration yielded the highest MDA level. These findings reflect the involvement of amino acids and polyphenols in protective mechanisms to overcome the toxicity of copper in marine microalgae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据