4.6 Article

Medical Image Segmentation Based on Transformer and HarDNet Structures

期刊

IEEE ACCESS
卷 11, 期 -, 页码 16621-16630

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2023.3244197

关键词

Image segmentation; Transformers; Feature extraction; Medical diagnostic imaging; Image coding; Decoding; Data mining; Deep learning; medical image segmentation; transformer; HarDNet; feature fusion

向作者/读者索取更多资源

This paper proposes a dual-encoder image segmentation network, including HarDNet68 and Transformer branch, which can extract the local features and global feature information of the input image, allowing the segmentation network to learn more image information, thus improving the effectiveness and accuracy of medical segmentation.
Medical image segmentation is a crucial way to assist doctors in the accurate diagnosis of diseases. However, the accuracy of medical image segmentation needs further improvement due to the problems of many noisy medical images and the high similarity between background and target regions. The current mainstream image segmentation networks, such as TransUnet, have achieved accurate image segmentation. Still, the encoders of such segmentation networks do not consider the local connection between adjacent chunks and lack the interaction of inter-channel information during the upsampling of the decoder. To address the above problems, this paper proposed a dual-encoder image segmentation network, including HarDNet68 and Transformer branch, which can extract the local features and global feature information of the input image, allowing the segmentation network to learn more image information, thus improving the effectiveness and accuracy of medical segmentation. In this paper, to realize the fusion of image feature information of different dimensions in two stages of encoding and decoding, we propose a feature adaptation fusion module to fuse the channel information of multi-level features and realize the information interaction between channels, and then improve the segmentation network accuracy. The experimental results on CVC-ClinicDB, ETIS-Larib, and COVID-19 CT datasets show that the proposed model performs better in four evaluation metrics, Dice, Iou, Prec, and Sens, and achieves better segmentation results in both internal filling and edge prediction of medical images. Accurate medical image segmentation can assist doctors in making a critical diagnosis of cancerous regions in advance, ensure cancer patients receive timely targeted treatment, and improve their survival quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据