4.8 Article

Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-36778-5

关键词

-

向作者/读者索取更多资源

A photocatalyst for CO2 reduction to C3H8 is prepared by implanting Cu single atoms on vacancy rich TiO2 single layers, which stabilizes key reaction intermediates and promotes C-C bond formation. By implanting Cu single atoms on Ti0.91O2 atomically-thin single layers and forming Cu-Ti-V-O unit, an efficient photocatalyst for the conversion of CO2 into C3H8 is achieved, with high electron-based and product-based selectivity.
A photocatalyst for CO2 reduction to C3H8 is prepared by implanting Cu single atoms on vacancy rich TiO2 single layers. Key reaction intermediates, *CHOCO and *CH2OCOCO, are stabilized on the catalyst which promotes C-C bond formation. Photochemical conversion of CO2 into high-value C2+ products is difficult to achieve due to the energetic and mechanistic challenges in forming multiple C-C bonds. Herein, an efficient photocatalyst for the conversion of CO2 into C3H8 is prepared by implanting Cu single atoms on Ti0.91O2 atomically-thin single layers. Cu single atoms promote the formation of neighbouring oxygen vacancies (V(O)s) in Ti0.91O2 matrix. These oxygen vacancies modulate the electronic coupling interaction between Cu atoms and adjacent Ti atoms to form a unique Cu-Ti-V-O unit in Ti0.91O2 matrix. A high electron-based selectivity of 64.8% for C3H8 (product-based selectivity of 32.4%), and 86.2% for total C2+ hydrocarbons (product-based selectivity of 50.2%) are achieved. Theoretical calculations suggest that Cu-Ti-V-O unit may stabilize the key *CHOCO and *CH2OCOCO intermediates and reduce their energy levels, tuning both C-1-C-1 and C-1-C-2 couplings into thermodynamically-favourable exothermal processes. Tandem catalysis mechanism and potential reaction pathway are tentatively proposed for C3H8 formation, involving an overall (20e(-) - 20H(+)) reduction and coupling of three CO2 molecules at room temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据