4.4 Article

Expanding the scope of novel 1,2,3-triazole derivatives as new antiparasitic drug candidates

期刊

RSC MEDICINAL CHEMISTRY
卷 14, 期 1, 页码 122-134

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2md00324d

关键词

-

向作者/读者索取更多资源

We synthesized a series of prenyl-1,2,3-triazoles from isoprenyl azides and alkynes to discover new antimalarial drug candidates. Thirteen analogs showed antimalarial activity, with compounds 1o and 1r identified as the most promising leads. The chemoinformatic analysis evaluated physicochemical parameters and cytotoxicity risk, and a potential target for the antimalarial activity was suggested.
We have previously shown that prenyl and aliphatic triazoles are interesting motifs to prepare new chemical entities for antiparasitic and antituberculosis drug development. In this opportunity a new series of prenyl-1,2,3-triazoles were prepared from isoprenyl azides and different alkynes looking for new antimalarial drug candidates. The compounds were prepared by copper(i) catalyzed dipolar cycloaddition of the isoprenyl azide equilibrium mixture providing exclusively 1,4-disubstituted 1,2,3-triazoles in a regiospecific fashion. The complete collection of 64 compounds was tested on chloroquine-sensitive (CQ sensitive), Sierra Leone (D6), and the chloroquine-resistant, Indochina (W2), strains of Plasmodium falciparum and those compounds which were not previously reported were also tested against Leishmania donovani, the causative agent for visceral leishmaniasis. Thirteen analogs displayed antimalarial activity with IC50 below 10 mu M, while the antileishmanial activity of the newly reported analogs could not improve upon those previously reported. Compounds 1o and 1r were identified as the most promising antimalarial drug leads with IC50 below 3.0 mu M for both CQ-sensitive and resistant P. falciparum strains with high selectivity index. Finally, a chemoinformatic in silico analysis was performed to evaluate physicochemical parameters, cytotoxicity risk and drug score. The validation of a bifunctional farnesyl/geranylgeranyl diphosphate synthase PfFPPS/GGPPS as the potential target of the antimalarial activity of selected analogs should be further investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据