4.8 Article

Fluorine-Rich Oxyfluoride Spinel-like Li1.25Ni0.625Mn1.125O3F Utilizing Redox-Active Ni and Mn for High Capacity and Improved Cyclability

期刊

ACS MATERIALS LETTERS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsmaterialslett.2c00973

关键词

-

向作者/读者索取更多资源

We successfully synthesized a new spinel-like oxyfluoride Li1.25Ni0.625Mn1.125O3F with significant cation disorder. Its crystal structure was confirmed by combined refinement of X-ray and neutron diffraction data. Li1.25Ni0.625Mn1.125O3F showed capacities of 225mAh/g and 285mAh/g at 25 and 40 degrees C, respectively, by intercalation of additional Li+ into the lattice. Compared to previously reported lithium transition metal disordered rocksalt or spinel-like oxyfluorides, Li1.25Ni0.625Mn1.125O3F exhibited significantly improved cycling stability with high structural integrity.
Extending the accessible capacity and cyclability is of central interest for cathode materials for Li-ion batteries. Here, we report the successful synthesis of a new spinel-like Li1.25Ni0.625Mn1.125O3F (Fd3m) oxyfluoride with significant cation disorder characterized by combined refinement of X-ray and neutron diffraction data. Li1.25Ni0.625Mn1.125O3F utilizes redox reactions of both Ni and Mn, accessing capacities of 225 (i.e., 1.46 Li+ capacity) and 285 mAh g-1 (i.e., 1.85 Li+ capacity) at 25 and 40 degrees C, respectively, through intercalation of additional Li+ into the lattice. Moreover, compared to lithium transition metal disordered rocksalt or spinel-like oxyfluorides previously reported, Li1.25Ni0.625Mn1.125O3F shows significantly improved cycling stability. Ex situ compositional, structural, and spectroscopic analyses of samples at different states of charge/discharge confirm a single-phase intercalation reaction and high structural integrity over cycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据