4.7 Article

Poly(caprolactone)/lignin-based 3D-printed dressings loaded with a novel combination of bioactive agents for wound-healing applications

期刊

出版社

ELSEVIER
DOI: 10.1016/j.sumnat.2023.e00581

关键词

Bioactive materials; 3D printing; Antimicrobial dressings; Sustained release; Curcumin; D-Panthenol

向作者/读者索取更多资源

Curcumin and lignin were combined with poly(caprolactone) to create 3D-printed wound dressings with antioxidant and antimicrobial properties. The dressings showed sustained release of DPA and CUR and demonstrated significant improvements in wound healing in animal studies. Histological examination also showed positive outcomes in terms of epithelization, inflammatory reaction, fibroblast proliferation, and neoangiogenesis.
Curcumin (CUR) has been shown to possess significant anti-inflammatory properties and significant wound healing potential. Additionally, lignin (LIG) is a renewable biomacromolecule with well-known antioxidant and antimicrobial properties, which makes this biomacromolecule a good candidate to be included in medical materials, such as wound dressings. Although many of the wound dressings used at present have interesting features, some are limited in terms of antibacterial properties. To address these limitations, in the present work, both CUR and LIG were combined with poly(caprolactone) (PCL), a biocompatible polymer, to obtain dressings with antioxidant and antimicrobial properties for wound healing treatment. Moreover, D-Panthenol (DPA) was included in the composite materials formulation due to its skin regenerative ability by enhancing epidermal differentiation. Semi-solid extrusion (SSE) 3D printing was used to manufacture wound dressings without the use of any solvents. 3D-printed dressings provided a sustained DPA and CUR release for periods of up to 4 and 35 days, respectively. A DPPH (2,2-diphenyl-1-picrylhydrozyl) assay was performed confirming that the presence of LIG and CUR provided antioxidant properties to the 3D-printed dressings. Additionally, these 3D-printed materials showed a marked resistance to adherence of Staphylococcus aureus when compared to the PCL control 3D-printed samples, resulting in substantial reductions of up to 89.9% and 98.9% after incubation periods of 4 h and 24 h respectively. Although, all of the 3D-printed materials were able to provide a supportive environment for cellular attachment, viability and growth, the combination of both bioactive compounds CUR and DPA exhibited the most significant values for cell viability and proliferation. In vivo wound healing study performed in Wistar rats showed that dressings containing these novel two compounds CUR and DPA exhibited marked improvement at any stage of the treatment process. Finally, histological examination revealed that dressings loaded with CUR and DPA also showed the best outcomes for all the evaluated parameters: (i) epithelisation, (ii) inflammatory reaction, (iii) proliferation rate of fibroblast and (iv) neoangiogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据