4.8 Article

Nano-phononic metamaterials enable an anomalous enhancement in the interfacial thermal conductance of the GaN/AlN heterojunction

期刊

NANOSCALE
卷 15, 期 14, 页码 6732-6737

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nr05954a

关键词

-

向作者/读者索取更多资源

In this study, a new mechanism to enhance interfacial thermal conductance using nano-phononic metamaterials was demonstrated, using GaN-AlN contact as an example. It was found that although constructing a superlattice can tune the thermal conductance, it cannot enhance it. By constructing an interfacial nano phononic metamaterial, it was suggested that the thermal conductance can be enhanced by 9%.
Improving the interfacial thermal conductance (ITC) is very important for heat dissipation in microelectronic and optoelectronic devices. In this work, taking GaN-AlN contact as an example, we demonstrated a new mechanism to enhance the interfacial thermal conductance using nano-phononic metamaterials. First, how a superlattice affects the ITC is investigated, and it is found that with decreasing superlattice periodic length, the ITC first decreases and then increases, because of the coherent phonon interference effect. However, although constructing a superlattice is effective for tuning the ITC, it cannot enhance the ITC. We suggest that the ITC can be enhanced by 9% through constructing an interfacial nano phononic metamaterial, which is contributed by the additional phonon transport channels for high-frequency phonons with a wide incidence-angle range. These results not only establish a deep understanding of the fundamental physics of the interfacial thermal conductance, but also provide a robust and scalable mechanism, which provides a degree of freedom for efficient thermal management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据