4.7 Article

Luminescent AgGaSe2/ZnSe nanocrystals: rapid synthesis, color tunability, aqueous phase transfer, and bio-labeling application

期刊

DALTON TRANSACTIONS
卷 52, 期 14, 页码 4554-4561

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2dt03979f

关键词

-

向作者/读者索取更多资源

High-quality tetragonal AgGaSe2 nanocrystals were successfully synthesized within 2 minutes through a facile colloidal method. The photoluminescence properties of the nanocrystals were optimized and the water-soluble AgGaSe2 nanocrystals showed potential for biological applications.
The unique optoelectronic properties of I-III-VI2 nanocrystals (NCs) have attracted extensive attention. Herein, element Se in oleylamine reduced by alkythiol, which has been demonstrated to generate highly reactive alkylammonium selenide, was selected as the Se precursor by us to successfully synthesize high-quality tetragonal AgGaSe2 NCs via a facile colloidal method in just 2 minutes. Further, the photoluminescence (PL) properties of the as-synthesized AgGaSe2 NCs were systematically optimized through utilizing one Zn precursor to integrate shell coating and anionic/cationic alloying strategies into our reactive system, resulting in not only the obvious improvement of PL intensity but also tunable PL color from blue to red. Furthermore, the ligand exchange approach was adopted for the aqueous phase transfer of the oleophilic AgGaSe2/ZnSe NCs. Our data suggest that either metalated mercaptopropionic acid (Zn-MPA) short- or 11-mercaptoundecanoic acid long-chain ligand exchanged NCs all could maintain the original high crystallinity, present good water solubility, and retain up to nearly 95% and 70% of the initial PL intensity, respectively. Benefiting from the low cytotoxicity, the water-soluble AgGaSe2/ZnSe NCs can be applied as a fluorescent probe in cell imaging and signal labels for the fluoroimmunoassay of prostate-specific antigen, implying their potential in biological application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据