4.6 Article

Revealing drug release and diffusion behavior in skin interstitial fluid by surface-enhanced Raman scattering microneedles

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 11, 期 14, 页码 3097-3105

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2tb02600g

关键词

-

向作者/读者索取更多资源

A novel microneedle formulation, called MNs, was developed for sensitive analysis of drug release and diffusion behavior in dermal interstitial fluid (ISF) using surface-enhanced Raman scattering (SERS). The study found that drug diffusion in ISF had no directional preference and was driven by concentration gradient. This research provides a new tool for in situ and real-time detection of molecules in ISF, which is significant for the development and evaluation of MN-based therapeutic systems.
Microneedle (MNs), as a novel dermal drug delivery formulation, have drawn a lot of attention in recent years. Drug release and diffusion behavior in dermal interstitial fluid (ISF) determines the pharmacokinetics and effectiveness of MNs, which have not been clearly elucidated until now. Herein, we develop surface-enhanced Raman scattering (SERS)-based detection MNs (D-MNs) for the sensitive analysis of model drugs in ISF. The surface of the D-MNs was deposited with a high density of hotspot-rich core-satellite gold nanoparticles, which would generate a sensitive SERS signal of a model drug (3,3 '-diethylthiatricarbocyanine, DTTC) released by therapeutic MNs (T-MNs). Furthermore, the D-MNs produced an internal-standard signal for drug signal calibration, increasing the accuracy of detection. Taking advantage of the D-MNs, the release and diffusion behavior of the drug from T-MNs in the ISF of living mice was systematically studied. It was found that DTTC diffused without directional preference in ISF up to a distance of 1.5 cm. The intensities at diffusion sites decreased sharply with increasing distance from the release site (less than 0.3% at 1.5 cm). These results indicated that drug concentration gradient rather than ISF fluidity was a major driving force for the diffusion. Moreover, the application of water-soluble MN polymers, hydrophilic model drugs in T-MNs, as well as a heating or cupping treatment of mouse skin, enhanced drug diffusion in ISF. This work provides a new tool for in situ and real-time detection of molecules in ISF, which would be beneficial for the development and evaluation of MN-based therapeutic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据