4.6 Article

Modulation of wetting of stimulus responsive polymer brushes by lipid vesicles: experiments and simulations

期刊

SOFT MATTER
卷 19, 期 14, 页码 2491-2504

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2sm01673g

关键词

-

向作者/读者索取更多资源

The interactions between vesicle and substrate were investigated using simulation and experiment. Polyacrylic acid brushes with cysteine side chains were grafted onto planar lipid membranes. The addition of Cd2+ ions compacted the polymer brushes and influenced the adhesion of lipid vesicles. Wetting of the vesicles occurred at [CdCl2] = 0.25 mM. The shape and adhesion of vesicles were quantitatively evaluated, and simulations revealed that wetting sensitivity was dependent on the interaction range.
The interactions between vesicle and substrate have been studied by simulation and experiment. We grafted polyacrylic acid brushes containing cysteine side chains at a defined area density on planar lipid membranes. Specular X-ray reflectivity data indicated that the addition of Cd2+ ions induces the compaction of the polymer brush layer and modulates the adhesion of lipid vesicles. Using microinterferometry imaging, we determined the onset level, [CdCl2] = 0.25 mM, at which the wetting of the vesicle emerges. The characteristics of the interactions between vesicle and brush were quantitatively evaluated by the shape of the vesicle near the substrate and height fluctuations of the membrane in contact with brushes. To analyze these experiments, we have systematically studied the shape and adhesion of axially symmetric vesicles for finite-range membrane-substrate interaction, i.e., a relevant experimental characteristic, through simulations. The wetting of vesicles sensitively depends on the interaction range and the approximate estimates of the capillary length change significantly, depending on the adhesion strength. We found, however, that the local transversality condition that relates the maximal curvature at the edge of the adhesion zone to the adhesion strength remains rather accurate even for a finite interaction range as long as the vesicle is large compared to the interaction range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据