4.6 Article

Multiple charge-transfer excited state induced efficient and stable thermally activated delayed fluorescence

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 11, 期 12, 页码 4210-4218

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3tc00365e

关键词

-

向作者/读者索取更多资源

Investigated the effects of two different donor-acceptor connection modes on dual-donor-acceptor thioxanthone derivatives and found that the alternate structure exhibits nearly isoenergetic singlet and triplet states, weak intramolecular charge transfer and strong spin-orbit coupling, leading to the highest photoluminescence quantum yield and reverse intersystem crossing rate. The resultant OLEDs achieve an ultra-high exciton utilization efficiency, external quantum efficiency, and excellent stability, showing potential for various applications.
The development of efficient and stable electroluminescent devices is one of the formidable challenges in the study of organic light-emitting diodes (OLEDs). Herein, three donor (D) and acceptor (A) connection arrangements in dual-D-A thioxanthone derivatives (ADAD, ADDA, DAAD) are investigated to parse their different intramolecular charge transfer (ICT) excited state features and their effects on intersystem crossing (ISC)-reverse intersystem crossing (RISC) as well as radiative transition processes. Compared to two others, the alternate-D-A structure (ADAD) affords nearly isoenergetic singlet and triplet states with weak ICT characters and strong spin-orbit couplings, suppressing the non-radiative transition and inducing multiple ISC-RISC cycles to achieve the highest photoluminescence quantum yield and RISC rate constant. Logically, OLED devices based on this emitter enable ultra-high exciton utilization efficiency of nearly 100%, an external quantum efficiency of 28.93%, and excellent device stability (with an estimated LT50 of about 2303 h at 1000 cd m(-2)). These findings could open a wide opportunity for a new class of organic light-emitting diodes for various applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据