4.6 Article

Role of interaction-induced tunneling in the dynamics of polar lattice bosons

期刊

PHYSICAL REVIEW B
卷 107, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.104305

关键词

-

向作者/读者索取更多资源

Intersite dipolar interactions induce nonergodic dynamics for dipolar bosons in an optical lattice, even without disorder. The neglected inherent dipole-induced density-dependent tunneling plays a crucial role in this dynamics. Delocalization is strengthened with increasing dipolar strength, in contrast to the case of hard-core bosons. Interaction-induced hopping should play a crucial role in future experiments on the dynamics of polar lattice gases.
Intersite dipolar interactions induce, even in absence of disorder, an intriguing nonergodic dynamics for dipolar bosons in an optical lattice. We show that the inherent dipole-induced density-dependent tunneling, typically neglected, plays a crucial role in this dynamics. For shallow-enough lattices, the delocalization stemming from the interaction-induced hopping overcomes the localization induced by intersite interactions. As a result, in stark contrast to the more studied case of hard-core bosons, delocalization is counterintuitively strengthened when the dipolar strength increases. Furthermore, the quasicancellation between bare and interaction-induced tunneling may lead, near a lattice-depth-dependent value of the dipole strength, to an exact decoupling of the Hilbert space between ergodic hard-core states and strongly nonergodic soft-core ones. Our results show that interaction-induced hopping should play a crucial role in future experiments on the dynamics of polar lattice gases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据