4.2 Article

Role of genome topology in the stability of viral capsids

期刊

PHYSICAL REVIEW RESEARCH
卷 5, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.5.L012040

关键词

-

向作者/读者索取更多资源

The stability of RNA viruses is influenced by genome topology and the interactions between RNA and capsid proteins. Through modeling, the genome topology is encoded as a graph, with adjacent packaging signals mapped to edges. Through simulations and evaluation of osmotic pressure, it is found that virion stability is dependent on both genome topology and degree of confinement. It is predicted that MS2 bacteriophage would prefer a more linear genome topology.
We explore how the stability of RNA viruses depends on genome topology and interactions between RNA and the capsid proteins. RNA is modeled as a branched polymer with 12 attractive sites (packaging signals) that can form bonds with 12 icosahedrally distributed capsid sites. The genome topology is encoded as a graph by mapping pairs of adjacent packaging signals to edges. We perform replica exchange molecular dynamics simulations and evaluate the osmotic pressure of all unique branched topologies of encapsulated RNA. We find that virion stability depends in a complex fashion on both genome topology and degree of confinement, and predict that MS2 bacteriophage should prefer a more linear genome topology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据