4.7 Article

Asymmetric spiral chimeras on a spheric surface of nonlocally coupled phase oscillators

期刊

PHYSICAL REVIEW E
卷 107, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.107.024212

关键词

-

向作者/读者索取更多资源

This study reports on an asymmetric spiral chimera with nonidentical incoherent cores of different sizes on the spherical surface of identical phase oscillators with nonlocal coupling. The bifurcation conditions of asymmetric spiral chimeras are derived and it is revealed that the asymmetric spiral chimera state emerges from the symmetric spiral chimera via a supercritical symmetry-breaking bifurcation. Rigorous stability analyses are carried out for different types of spiral chimeras and the complete stability diagram is presented. The theoretical findings are verified through extensive numerical simulations.
The spiral chimera state shows a remarkable spatiotemporal pattern in a two-dimensional array of oscillators for which the coherent spiral arms coexist with incoherent cores. In this work, we report on an asymmetric spiral chimera having incoherent cores of different sizes on the spherical surface of identical phase oscillators with nonlocal coupling. This asymmetric spiral chimera exhibits a strongly symmetry-broken state in the sense that not only the coherent and incoherent domains coexist, but also their incoherent cores are nonidentical, although the underlying coupling structure is symmetric. On the basis of analyses along the Ott-Antonsen invariant manifold, the bifurcation conditions of asymmetric spiral chimeras are derived, which reveals that the asymmetric spiral chimera state emerges via a supercritical symmetry-breaking bifurcation from the symmetric spiral chimera. For the coupling function composed of two Legendre modes, rigorous stability analyses are carried out to present a complete stability diagram for different types of spiral chimeras, including the stationary symmetric and asymmetric spiral chimeras as well as breathing asymmetric spiral chimera. For the general coupling scheme the asymmetric spiral chimera occurs as a result of competition between the odd and even Legendre modes of the coupling function. Our theoretical findings are verified by using extensive numerical simulations of the model system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据