4.5 Article

Sunlight harvesting for heat generation inside water using biosynthesized magnetite nanoparticles

期刊

BIOMATERIALS SCIENCE
卷 11, 期 10, 页码 3656-3668

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2bm02132c

关键词

-

向作者/读者索取更多资源

A low-cost and environmentally friendly method using weeping willow leaf extract as a reducing agent was employed for synthesizing magnetite nanoparticles (Fe3O4 NPs). The synthesized NPs showed plasmonic properties under solar radiation and were able to significantly raise the temperature of water. The optimal pH value for the Fe3O4 NPs was found to be 6, resulting in high stability and a dramatic increase in water temperature.
A low-cost, simple, inexpensive, and environmentally friendly method has been employed for synthesizing magnetite nanoparticles (Fe3O4 NPs). In this study, weeping willow (Salix babylonica L.) aqueous leaf extract has been utilized as a reducing, capping, and stabilizing agent. The synthesized Fe3O4 NPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, FT-IR spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential analysis, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The localized surface plasmon resonance (LSPR) performance of the Fe3O4 NPs was examined. It has been shown that the biosynthesized Fe3O4 NPs once dispersed in water can raise the temperature of water significantly when they absorb solar radiation through surface plasmon resonance (SPR). The impact of the pH value on the Fe3O4 NPs was also investigated. It has been shown that the optimum pH value among the examined pH values was pH 6. At this pH, the biosynthesized Fe3O4 NPs were able to increase the temperature of water from 25 degrees C to similar to 36 degrees C. This dramatic increase in temperature was owing to the Fe3O4 NPs synthesized at pH 6 which acquired high crystallinity, monodispersity, high purity, minimum agglomeration, a small particle size, and high stability. In addition, the mechanism of converting solar energy to thermal energy has been discussed intensively. To the best of our knowledge, this study is unique and the novelty of this investigation is that Fe3O4 NPs acquire plasmonic-like properties under solar radiation. Also, they are anticipated to be an innovative photothermal adaptation material for solar-based water heating and heat absorption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据