4.7 Article

Toward a General Protocol for Catalytic Oxidative Transformations Using Electrochemically Generated Hypervalent Iodine Species

期刊

JOURNAL OF ORGANIC CHEMISTRY
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.joc.2c023091424J

关键词

-

向作者/读者索取更多资源

A simple catalytic electrosynthetic protocol for oxidative transformations mediated by hypervalent iodine reagents has been developed. This protocol eliminates chemical oxidants and their associated chemical waste by utilizing electricity to drive the catalytic cycle. It has been validated through two different hypervalent iodine-mediated transformations, showing wide substrate scope, excellent functional group tolerance, and the ability for scale-up and catalyst recovery.
A simple catalytic electrosynthetic protocol for oxidative transformations mediated by hypervalent iodine reagents has been developed. In this protocol, electricity drives the iodine(I)/iodine(III) catalytic cycle enabling catalysis with in situ generated hypervalent iodine species, thereby eliminating chemical oxidants and the inevitable chemical waste associated with their mode of action. In addition, no added electrolytic salts are needed in this process. The developed method has been validated using two different hypervalent iodine-mediated transformations: (i) the oxidative cyclization of N-allylic and N-homoallylic amides to the corresponding dihydrooxazole and dihydro-1,3-oxazine derivatives, respectively, and (ii) the alpha-tosyloxylation of ketones. Both reactions proceeded smoothly under the developed catalytic electrosynthetic conditions without reoptimization, featuring a wide substrate scope and excellent functional group tolerance. In addition, scale-up to gram-scale and catalyst recovery were easily achieved maintaining the high efficiency of the process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据