4.3 Article

Ctr9, a Key Component of the Paf1 Complex, Affects Proliferation and Terminal Differentiation in the Developing Drosophila Nervous System

期刊

G3-GENES GENOMES GENETICS
卷 6, 期 10, 页码 3229-3239

出版社

GENETICS SOCIETY AMERICA
DOI: 10.1534/g3.116.034231

关键词

neuroblast; lineage tree; cell cycle; epigenetics; terminal differentiation; FlyBook

资金

  1. Swedish Research Council [621-2013-5258]
  2. Knut and Alice Wallenberg Foundation [KAW2011.0165]
  3. Swedish Cancer Foundation [120531]
  4. Swedish Royal Academy of Sciences

向作者/读者索取更多资源

The Paf1 protein complex (Paf1C) is increasingly recognized as a highly conserved and broadly utilized regulator of a variety of transcriptional processes. These include the promotion of H3K4 and H3K36 trimethylation, H2BK123 ubiquitination, RNA Pol II transcriptional termination, and also RNA-mediated gene silencing. Paf1C contains five canonical protein components, including Paf1 and Ctr9, which are critical for overall complex integrity, as well as Rtf1, Leo1, and Cdc73/Parafibromin(Hrpt2)/Hyrax. In spite of a growing appreciation for the importance of Paf1C from yeast and mammalian studies, there has only been limited work in Drosophila. Here, we provide the first detailed phenotypic study of Ctr9 function in Drosophila. We found that Ctr9 mutants die at late embryogenesis or early larval life, but can be partly rescued by nervous system reexpression of Ctr9. We observed a number of phenotypes in Ctr9 mutants, including increased neuroblast numbers, increased nervous system proliferation, as well as downregulation of many neuropeptide genes. Analysis of cell cycle and regulatory gene expression revealed upregulation of the E2f1 cell cycle factor, as well as changes in Antennapedia and Grainy head expression. We also found reduction of H3K4me3 modification in the embryonic nervous system. Genome-wide transcriptome analysis points to additional downstream genes that may underlie these Ctr9 phenotypes, revealing gene expression changes in Notch pathway target genes, cell cycle genes, and neuropeptide genes. In addition, we find significant effects on the gene expression of metabolic genes. These findings reveal that Ctr9 is an essential gene that is necessary at multiple stages of nervous system development, and provides a starting point for future studies of the Paf1C in Drosophila.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据