4.6 Article

Optimizing product manufacturability in 3D printing

期刊

FRONTIERS OF COMPUTER SCIENCE
卷 11, 期 2, 页码 347-357

出版社

HIGHER EDUCATION PRESS
DOI: 10.1007/s11704-016-6154-6

关键词

3D printing; manufacturability; optimization; discrete products; differential evolution algorithm

资金

  1. National Natural Science Foundation of China [71372007]

向作者/读者索取更多资源

3D printing has become a promising technique for industry production. This paper presents a research on the manufacturability optimization of discrete products under the influence of 3D printing technology. For this, we first model the problem using a tree structure, and then formulate it as a linear integer programming, where the total production time is to be minimized with the production cost constraint. To solve the problem, a differential evolution (DE) algorithm is developed, which automatically determines whether traditional manufacturing methods or 3D printing technology should be used for each part of the production. The algorithm is further quantitatively evaluated on a synthetic dataset, compared with the exhaustive search and alternating optimization solutions. Simulation results show that the proposed algorithm can well combine the traditional manufacturing methods and 3D printing technology in production, which is helpful to attain optimized product design and process planning concerning manufacture time. Therefore, it is beneficial to provide reference of the widely application and further industrialization of the 3D printing technology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据