4.7 Article

Object-Based Tree Species Classification in Urban Ecosystems Using LiDAR and Hyperspectral Data

期刊

FORESTS
卷 7, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/f7060122

关键词

LiDAR; hyperspectral; tree species classification; urban forests

类别

资金

  1. USDA Mclntire-Stennis Cooperative Forestry Research Program
  2. Precision Forestry Cooperative at the University of Washington
  3. Green Cities Research Alliance
  4. Urban Natural Resources Stewardship program at the U.S. Forest Service PNW Research Station
  5. China Scholarship Council

向作者/读者索取更多资源

In precision forestry, tree species identification is key to evaluating the role of forest ecosystems in the provision of ecosystem services, such as carbon sequestration and assessing their effects on climate regulation and climate change. In this study, we investigated the effectiveness of tree species classification of urban forests using aerial-based HyMap hyperspectral imagery and light detection and ranging (LiDAR) data. First, we conducted an object-based image analysis (OBIA) to segment individual tree crowns present in LiDAR-derived Canopy Height Models (CHMs). Then, hyperspectral values for individual trees were extracted from HyMap data for band reduction through Minimum Noise Fraction (MNF) transformation which allowed us to reduce the data to 20 significant bands out of 118 bands acquired. Finally, we compared several different classifications using Random Forest (RF) and Multi Class Classifier (MCC) methods. Seven tree species were classified using all 118 bands which resulted in 46.3% overall classification accuracy for RF versus 79.6% for MCC. Using only the 20 optimal bands extracted through MNF, both RF and MCC achieved an increase in overall accuracy to 87.0% and 88.9%, respectively. Thus, the MNF band selection process is a preferable approach for tree species classification when using hyperspectral data. Further, our work also suggests that RF is heavily disadvantaged by the high-dimensionality and noise present in hyperspectral data, while MCC is more robust when handling high-dimensional datasets with small sample sizes. Our overall results indicated that individual tree species identification in urban forests can be accomplished with the fusion of object-based LiDAR segmentation of crowns and hyperspectral characterization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据