4.6 Article

Synthesis and characterization of low surface energy thermoplastic polyurethane elastomers based on polydimethylsiloxane

期刊

RSC ADVANCES
卷 13, 期 18, 页码 12023-12034

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ra01142a

关键词

-

向作者/读者索取更多资源

Organosilicon modified polyurethane elastomers (Si-MTPUs) were synthesized to improve the anti-graffiti property of thermoplastic polyurethane elastomers (TPUs). Si-MTPUs were prepared from polydimethylsiloxane (PDMS) and polytetramethylene glycol (PTMG) as mixed soft segment, 1,4-butanediol (BDO) and imidazole salt ionic liquid N-glyceryl-N-methyl imidazolium chloride ([MIMl,g]Cl) used as chain extender, and 4,4'-dicyclohexylmethane diisocyanate (HMDI). The mechanical properties of Si-MTPU-10 with a PDMS content of 10 wt% were optimized, with a maximum tensile strength of 32.3 MPa and elongation at break of 656%. The surface energy reached the minimum value of 23.1 mN m(-1) with the best anti-graffiti performance.
Organosilicon modified polyurethane elastomers (Si-MTPUs) were synthesized in order to improve the anti-graffiti property of thermoplastic polyurethane elastomers (TPUs). Si-MTPUs were prepared from polydimethylsiloxane (PDMS) and polytetramethylene glycol (PTMG) as mixed soft segment, 1,4-butanediol (BDO) and imidazole salt ionic liquid N-glyceryl-N-methyl imidazolium chloride ([MIMl,g]Cl) used as chain extender, and 4,4'-dicyclohexylmethane diisocyanate (HMDI). The structure, thermal stability, mechanical properties and physical crosslinking density of Si-MTPUs were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), mechanical test and low field nuclear magnetic resonance. Surface energy and water absorption were characterized by static contact angle test and water resistance test, and anti-graffiti and self-cleaning properties were characterized with water, milk, ink, lipstick, oily markers and spray paint. It was found that the mechanical properties of Si-MTPU-10 with the content of PDMS 10 wt% were optimized, with a maximum tensile strength of 32.3 MPa and elongation at break of 656%. Surface energy reached the minimum value of 23.1 mN m(-1) with the best anti-graffiti performance, which no longer decreased with the increase of PDMS contents. This work provides novel idea and strategy for the preparation of low surface energy TPUs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据