4.6 Article

Superconductivity and fermionic dissipation in quantum Hall edges

期刊

PHYSICAL REVIEW B
卷 107, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.L161105

关键词

-

向作者/读者索取更多资源

A recent experimental work provided evidence for proximity-induced superconductivity in fractional quantum Hall edges, which is crucial for realizing parafermion zero modes. The experimental results showed a crossed Andreev reflection signal with a stronger probability for fractional quantum Hall edges compared to integer ones. The theoretical model explained these findings by considering the coupling between edge modes and normal states in Abrikosov vortices induced by the magnetic field.
Proximity-induced superconductivity in fractional quantum Hall edges is a prerequisite to proposed realiza-tions of parafermion zero modes. A recent experimental work [Gill et al., Phys. Rev. X 12, 021057 (2022)] provided evidence for such coupling, in the form of a crossed Andreev reflection signal, in which electrons enter a superconductor from one chiral mode and are reflected as holes to another, counterpropagating chiral mode. Remarkably, while the probability for crossed Andreev reflection was small, it was stronger for nu = 1/3 fractional quantum Hall edges than for integer ones. We theoretically explain these findings, including the relative strengths of the signals in the two cases and their qualitatively different temperature dependencies. An essential part of our model is the coupling of the edge modes to normal states in the cores of Abrikosov vortices induced by the magnetic field, which provide a fermionic bath. We find that the stronger crossed Andreev reflection in the fractional case originates from the suppression of electronic tunneling between the fermionic bath and the fractional quantum Hall edges. Our theory shows that the mere observation of crossed Andreev reflection signal does not necessarily imply the presence of localized parafermion zero modes, and suggests ways to identify their presence from the behavior of this signal in the low-temperature regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据