4.6 Article

Interlayer modification and single-layer exfoliation of the Ruddlesden-Popper perovskite oxynitride K2LaTa2O6N to improve photocatalytic H2 evolution activity

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 11, 期 17, 页码 9485-9492

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3ta01387a

关键词

-

向作者/读者索取更多资源

Modification of the interlayer nanospaces of lamellar solids can enhance their physical properties and chemical functions. In this study, the interlayer of a layered perovskite oxynitride was modified by H+/K+ exchange, ethylamine intercalation, and exfoliation-restacking. The ethylamine intercalated specimen showed significantly improved photocatalytic H-2 evolution activity, while the restacked nanosheets exhibited decreased activity. These findings suggest that ethylamine intercalation provided suitable interlayer nanospaces for Pt cocatalyst loading, promoting the photocatalytic reaction.
Modification of the interlayer nanospaces of lamellar solids is an effective means of enhancing the physical properties and chemical functions of such materials. The present work demonstrates the interlayer modification of the layered perovskite oxynitride K2LaTa2O6N, a photocatalyst having a similar to 600 nm absorption edge and exhibiting visible-light-driven H-2 evolution activity. This material was subjected to various interlayer modifications, including H+/K+ exchange, ethylamine (EA) intercalation and exfoliation with tetra(n-butyl)ammonium hydroxide (with subsequent restacking) while maintaining its capacity for visible light absorption. H-2 evolution activity from aqueous methanol with the aid of an optimal amount of a Pt cocatalyst was improved by a factor of approximately 60 following EA intercalation to increase the interlayer spacing of the host material. However, subsequent exfoliation-restacking to yield flocculated nanosheets led to a decrease in activity as compared with the EA-intercalated specimen. The present results indicate that the intercalation of EA provided interlayer nanospaces suitable for Pt cocatalyst loading and so promoted the photocatalytic H-2 evolution reaction, while the restacked nanosheets did not provide space for Pt loading.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据