4.8 Article

Synthesis of renewable isoindolines from bio-based furfurals

期刊

GREEN CHEMISTRY
卷 25, 期 8, 页码 3297-3305

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2gc04786a

关键词

-

向作者/读者索取更多资源

Upgrading biomass-derived platforms to functionalized aromatics by a tandem Diels-Alder (DA) cycloaddition-aromatization strategy has attracted attention. Three challenges exist: improving the equilibrium of DA cycloaddition, controlling the regioselectivity of DA adducts, and increasing the stability of the cycloadduct. In this study, an intramolecular cycloaromatization strategy was developed using a defective Zn-BTC-SA catalyst and an acidic ionic liquid to achieve efficient and selective conversion of bio-furfurals to isoindolinones under liquid phase conditions. The protocol showed high yields and scalability.
Upgrading biomass-derived platforms to functionalized aromatics by a tandem Diels-Alder (DA) cycloaddition-aromatization strategy has attracted broad attention. However, three challenges exist: improving the equilibrium of DA cycloaddition, controlling the regioselectivity of DA adducts, and increasing the stability of the cycloadduct. Herein, an intramolecular cycloaromatization strategy was developed for the direct upgradation of bio-furfurals to isoindolinones under liquid phase conditions via the selective formation of exo-DA adducts. The efficiency of the intramolecular DA cycloaddition was remarkably promoted by a defective Zn-BTC-SA catalyst quantitatively forming the desired regioselective exo-DA cycloadduct with higher thermal stability. Meanwhile, the co-existence of an acidic ionic liquid ([Hmim]HSO4) could facilitate the subsequent aromatization to generate isoindolinones in quantitative yields. Theoretical calculations elaborated the significance of the in situ formed exo-DA adducts with enhanced stability in the cascade conversion process. Moreover, this protocol is applicable to the production of a wide range of renewable isoindolinone derivatives and commercial medicines in excellent yields (>92%) and is suitable for gram-scale reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据