4.7 Article

Breaking through the interfacial energy barrier limitations of type-I heterojunctions via ferroelectric polarization engineering: a case study of Bi5Ti3FeO15/BiOCl

期刊

INORGANIC CHEMISTRY FRONTIERS
卷 10, 期 10, 页码 3112-3120

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3qi00273j

关键词

-

向作者/读者索取更多资源

The band structure of a heterojunction greatly affects the efficiency of photocharge separation. Designing heterojunctions with appropriate band structures is crucial for photocatalytic applications. In this study, we demonstrate that the ferroelectric polarization in a Bi5Ti3FeO15/BiOCl heterostructure can change the direction of photocharge flow, overcoming the energy barrier limitations of a type-I heterojunction. The results show that the polarized BTF/BOC films exhibit a photocurrent density three times larger than the unpolarized films, which is attributed to the large-area and semi-coherent interface of the BTF/BOC heterojunction.
The band structure of a heterojunction significantly affects its photocharge separation efficiency. Designing heterojunctions with suitable band structures is very important for photocatalytic applications. Herein, we demonstrate that Bi5Ti3FeO15/BiOCl (BTF/BOC), a type-I heterostructure, could change the flow direction of photocharges via ferroelectric polarization. The experimental results revealed that the ferroelectric built-in electric field could break through the energy band limitation of the type-I heterojunction and drive the photogenerated carriers to cross the energy barriers to the highly active BOC. Benefiting from the large-area and semi-coherent interface of the BTF/BOC heterojunction, the internal electric field was not largely compensated by space charges, leading to polarized BTF/BOC films exhibiting a photocurrent density three times larger than that of the unpolarized films. This study reveals that the internal electric field can break through the interfacial energy barrier limitations of type-I heterojunctions, providing new insights into the structural switching of type-I heterojunctions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据