4.7 Article

Weekly high-resolution multi-spectral and thermal uncrewed-aerial-system mapping of an alpine catchment during summer snowmelt, Niwot Ridge, Colorado

期刊

EARTH SYSTEM SCIENCE DATA
卷 15, 期 4, 页码 1733-1747

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/essd-15-1733-2023

关键词

-

向作者/读者索取更多资源

This paper describes the data collection, processing, accuracy assessment, and availability of a series of weekly uncrewed-aerial-system surveys over the Niwot Ridge LTER site in 2017. The datasets provide valuable insights into the seasonal transitions in alpine ecosystems.
Alpine ecosystems are experiencing rapid change as a result of warming temperatures and changes in the quantity, timing and phase of precipitation. This in turn impacts patterns and processes of ecohydrologic connectivity, vegetation productivity and water provision to downstream regions. The fine-scale heterogeneous nature of these environments makes them challenging areas to measure with traditional instrumentation and spatiotemporally coarse satellite imagery. This paper describes the data collection, processing, accuracy assessment and availability of a series of approximately weekly-interval uncrewed-aerial-system (UAS) surveys flown over the Niwot Ridge Long Term Ecological Research site during the 2017 summer-snowmelt season. Visible, near-infrared and thermal-infrared imagery was collected. This unique series of 5-25 cm resolution multi-spectral and thermal orthomosaics provides a unique snapshot of seasonal transitions in a high alpine catchment. Weekly radiometrically calibrated normalised difference vegetation index maps can be used to track vegetation health at the pixel scale through time. Thermal imagery can be used to map the movement of snowmelt across and within the near sub-surface as well as identify locations where groundwater is discharging to the surface. A 10 cm resolution digital surface model and dense point cloud (146 pointsm 2) are also provided for topographic analysis of the snow-free surface. These datasets augment ongoing data collection within this heavily studied and important alpine site; they are made publicly available to facilitate wider use by the research community. Datasets and related metadata can be accessed through the Environmental Data Initiative Data Portal, https://doi.org/10.6073/pasta/dadd5c2e4a65c781c2371643f7ff9dc4 (Wigmore, 2022a), https://doi.org/10.6073/pasta/073a5a67ddba08ba3a24fe85c5154da7 (Wigmore, 2022c), https://doi.org/10.6073/pasta/a4f57c82ad274aa2640e0a79649290ca (Wigmore and Niwot Ridge LTER, 2021a), https://doi.org/10.6073/pasta/444a7923deebc4b660436e76ffa3130c (Wigmore and Niwot Ridge LTER, 2021b), https://doi.org/10.6073/pasta/1289b3b41a46284d2a1c42f1b08b3807 (Wigmore and Niwot Ridge LTER, 2022a), https://doi.org/10.6073/pasta/70518d55a8d6ec95f04f2d8a0920b7b8 (Wigmore and Niwot Ridge LTER, 2022b). A summary of the available datasets can be found in the data availability section below.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据