4.7 Article

The Effect of the Feeding System on Fat Deposition in Yak Subcutaneous Fat

期刊

出版社

MDPI
DOI: 10.3390/ijms24087381

关键词

yak; feeding system; subcutaneous fat; fat deposition; regulatory mechanism

向作者/读者索取更多资源

This study explores the effect of feeding systems on fat deposition in yaks through transcriptomics and lipidomics. It evaluates the thickness of subcutaneous fat and detects differences in transcriptomes and lipidomes between yaks under stall and graze feeding. The study reveals differences in lipid metabolism and identifies key genes and pathways involved in fat deposition.
Fat deposition is very important to the growth and reproduction of yaks. In this study, the effect of the feeding system on fat deposition in yaks was explored by transcriptomics and lipidomics. The thickness of the subcutaneous fat in yaks under stall (SF) and graze feeding (GF) was evaluated. The transcriptomes and lipidomes of the subcutaneous fat in yaks under different feeding systems were detected by RNA-sequencing (RNA-Seq) and non-targeted lipidomics based on ultrahigh-phase liquid chromatography tandem mass spectrometry (UHPLC-MS), respectively. The differences in lipid metabolism were explored, and the function of differentially expressed genes (DEGs) was evaluated by gene ontology (GO) and Kyoto encyclopedia of genes and genome (KEGG) analysis. Compared with GF yaks, SF yaks possessed stronger fat deposition capacity. The abundance of 12 triglycerides (TGs), 3 phosphatidylethanolamines (PEs), 3 diglycerides (DGs), 2 sphingomyelins (SMs) and 1 phosphatidylcholine (PC) in the subcutaneous fat of SF and GF yaks was significantly different. Under the mediation of the cGMP-PKG signaling pathway, the blood volume of SF and GF yaks may be different, which resulted in the different concentrations of precursors for fat deposition, including non-esterified fatty acid (NEFA), glucose (GLU), TG and cholesterol (CH). The metabolism of C16:0, C16:1, C17:0, C18:0, C18:1, C18:2 and C18:3 in yak subcutaneous fat was mainly realized under the regulation of the INSIG1, ACACA, FASN, ELOVL6 and SCD genes, and TG synthesis was regulated by the AGPAT2 and DGAT2 genes. This study will provide a theoretical basis for yak genetic breeding and healthy feeding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据