4.8 Article

Molecular Bridge Engineering for Tuning Quantum Electronic Transport and Anisotropy in Nanoporous Graphene

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 145, 期 16, 页码 8988-8995

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c001738988

关键词

-

向作者/读者索取更多资源

Recent advances in surface-assisted synthesis have shown that graphene nanoribbons can be coupled laterally to form nanoporous graphene structures. This graphene nanoarchitecture consists of weakly coupled semiconducting nanochannels with electron propagation characterized by interchannel quantum interferences. By utilizing phenylene bridges, the electronic coupling between the nanoribbons in the nanoporous graphene structure can be controlled, providing versatility through different phenylene cross-coupling configurations and twist angles. Simulation results demonstrate the ability to switch on/off or modulate the interribbon coupling using the chemical or conformational knob. Molecular bridges offer efficient tools for engineering quantum transport and anisotropy in carbon-based 2D nanoarchitectures.
Recent advances on surface-assisted synthesis have demonstrated that arrays of nanometer wide graphene nanoribbons can be laterally coupled with atomic precision to give rise to a highly anisotropic nanoporous graphene structure. Electronically, this graphene nanoarchitecture can be conceived as a set of weakly coupled semiconducting 1D nanochannels with electron propagation characterized by substantial interchannel quantum interferences. Here, we report the synthesis of a new nanoporous graphene structure where the interribbon electronic coupling can be controlled by the different degrees of freedom provided by phenylene bridges that couple the conducting channels. This versatility arises from the multiplicity of phenylene cross-coupling configurations, which provides a robust chemical knob, and from the interphenyl twist angle that acts as a fine-tunable knob. The twist angle is significantly altered by the interaction with the substrate, as confirmed by a combined bond-resolved scanning tunneling microscopy (STM) and ab initio analysis, and should accordingly be addressable by other external stimuli. Electron propagation simulations demonstrate the capability of either switching on/off or modulating the interribbon coupling by the corresponding use of the chemical or the conformational knob. Molecular bridges therefore emerge as efficient tools to engineer quantum transport and anisotropy in carbon-based 2D nanoarchitectures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据