4.6 Article

Lateral vibration of an axially moving thermoelastic nanobeam subjected to an external transverse excitation

期刊

AIMS MATHEMATICS
卷 8, 期 1, 页码 2272-2295

出版社

AMER INST MATHEMATICAL SCIENCES-AIMS
DOI: 10.3934/math.2023118

关键词

nonlocal theory; moving beams; phase-lag; external load; EB theory

向作者/读者索取更多资源

This paper presents a mathematical formulation for transverse resonance of thermoelastic nanobeams that are simply supported and compressed with an initial axial force. The effect of length scale is analyzed using the concept of nonlocal elasticity and the dual-phase-lag heat transfer theory. The nanobeam moves in one direction at a constant speed due to a changing thermal load. The governing motion equation is derived using Hamilton's principle and solved using Laplace transform technique. The impact of nonlocal nanoscale and axial velocity on the responses of the moving beam are investigated, revealing substantial effects of phase delays, nonlocal parameter, and external excitation load on the system behavior.
This paper gives a mathematical formulation for the transverse resonance of thermoelastic nanobeams that are simply supported and compressed with an initial axial force. The nonlocal elasticity concept is used to analyze the influence of length scale with the dual-phase-lag (DPL) heat transfer theory. The nanobeam is due to a changing thermal load and moves in one direction at a constant speed. The governing motion equation for the nonlocal Euler-Bernoulli (EB) beam hypothesis can also be derived with the help of Hamilton's principle and then solved by means of the Laplace transform technique. The impacts of nonlocal nanoscale and axial velocity on the different responses of the moving beam are investigated. The results reveal that phase delays, as well as the nonlocal parameter and external excitation load, have a substantial impact on the system's behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据