4.0 Article

Glymphatic clearance estimated using diffusion tensor imaging along perivascular spaces is reduced after traumatic brain injury and correlates with plasma neurofilament light, a biomarker of injury severity

期刊

BRAIN COMMUNICATIONS
卷 5, 期 3, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/braincomms/fcad134

关键词

traumatic brain injury; glymphatic; perivascular; clearance; MRI

向作者/读者索取更多资源

Using diffusion tensor imaging along perivascular spaces, the study shows reduced glymphatic clearance in subjects with traumatic brain injury compared to healthy controls and its association with injury severity biomarker. The glymphatic system plays a crucial role in clearing waste products and toxins from the brain during sleep. Failure of glymphatic system is thought to contribute to protein deposition in neurodegenerative disorders. The study suggests that understanding glymphatic functioning after traumatic brain injury could lead to novel therapies for better recovery and reduced risk of neurodegeneration.
Using an MRI technique called diffusion tensor imaging along perivascular space to estimate brain glymphatic clearance, Butler et al. demonstrate clearance reductions in subjects with traumatic brain injury as compared with healthy controls and in association with a blood biomarker of injury severity. The glymphatic system is a perivascular fluid clearance system, most active during sleep, considered important for clearing the brain of waste products and toxins. Glymphatic failure is hypothesized to underlie brain protein deposition in neurodegenerative disorders like Alzheimer's disease. Preclinical evidence suggests that a functioning glymphatic system is also essential for recovery from traumatic brain injury, which involves release of debris and toxic proteins that need to be cleared from the brain. In a cross-sectional observational study, we estimated glymphatic clearance using diffusion tensor imaging along perivascular spaces, an MRI-derived measure of water diffusivity surrounding veins in the periventricular region, in 13 non-injured controls and 37 subjects who had experienced traumatic brain injury similar to 5 months previously. We additionally measured the volume of the perivascular space using T-2-weighted MRI. We measured plasma concentrations of neurofilament light chain, a biomarker of injury severity, in a subset of subjects. Diffusion tensor imaging along perivascular spaces index was modestly though significantly lower in subjects with traumatic brain injury compared with controls when covarying for age. Diffusion tensor imaging along perivascular spaces index was significantly, negatively correlated with blood levels of neurofilament light chain. Perivascular space volume did not differ in subjects with traumatic brain injury as compared with controls and did not correlate with blood levels of neurofilament light chain, suggesting it may be a less sensitive measure for injury-related perivascular clearance changes. Glymphatic impairment after traumatic brain injury could be due to mechanisms such as mislocalization of glymphatic water channels, inflammation, proteinopathy and/or sleep disruption. Diffusion tensor imaging along perivascular spaces is a promising method for estimating glymphatic clearance, though additional work is needed to confirm results and assess associations with outcome. Understanding changes in glymphatic functioning following traumatic brain injury could inform novel therapies to improve short-term recovery and reduce later risk of neurodegeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据