4.7 Article

Giant enhancement of the initial SERS activity for plasmonic nanostructures via pyroelectric PMN-PT

期刊

NANOSCALE HORIZONS
卷 8, 期 7, 页码 948-957

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d3nh00053b

关键词

-

向作者/读者索取更多资源

In this study, a simply-prepared and highly sensitive electric field-induced surface-enhanced Raman spectroscopy (E-SERS) substrate is proposed by combining a pyroelectric material (PMN-PT) with plasmonic silver nanoparticles (Ag NP). The SERS signals are significantly enhanced by more than 100 times after applying positive or negative pyroelectric potentials, mainly due to the chemical mechanism induced by charge transfer. Additionally, a novel nanocavity structure composed of PMN-PT/Ag/Al2O3/silver nanocubes (Ag NCs) is introduced, which can efficiently convert light energy into heat energy and achieve a tremendous enhancement of SERS signals.
Herein, a simply-prepared and highly sensitive electric field-induced surface-enhanced Raman spectroscopy (E-SERS) substrate is proposed by combining a pyroelectric material (PMN-PT) with the plasmonic silver nanoparticles (Ag NP). The intensity of SERS signals is further enhanced by more than 100 times after the application of positive or negative pyroelectric potentials. Theoretical calculations and experimental characterizations demonstrate that the chemical mechanism (CM) as induced by the charge transfer (CT) is mainly responsible for enhanced E-SERS. In addition, a novel nanocavity structure with PMN-PT/Ag/Al2O3/silver nanocubes (Ag NCs) was also introduced, which could effectively convert light energy into heat energy and realize a tremendous enhancement of SERS signals. These findings are expected to further accelerate the application of plasmonic metal nanoparticle-based pyroelectric materials in the fields of energy conversion, optical-sensors and photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据