4.6 Article

Enhanced nematicity emerging from higher-order Van Hove singularities

期刊

PHYSICAL REVIEW B
卷 107, 期 18, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.184504

关键词

-

向作者/读者索取更多资源

Motivated by the experimental identification of a higher-order Van Hove singularity (VHS) in AV3Sb5 kagome metals, this study investigates electronic instabilities of two-dimensional lattice models with higher-order VHS and flavor degeneracy. The larger power-law density of states and weaker nesting propensity of higher-order VHSs lead to distinct competing instabilities. Unbiased renormalization group calculations reveal a rich phase diagram containing ferromagnetism, antiferromagnetism, superconductivity, and Pomeranchuk orders. Notably, there is a generic transition from superconductivity to a d-wave Pomeranchuk order with increasing flavor number. Implications for the intriguing quantum states of AV3Sb5 kagome metals are also discussed.
Motivated by the experimental identification of a higher-order Van Hove singularity (VHS) in AV3Sb5 kagome metals, we study electronic instabilities of two-dimensional lattice models with higher-order VHS and flavor degeneracy. In contrast to conventional VHSs, the larger power-law density of states and the weaker nesting propensity of higher-order VHSs conspire together to generate distinct competing instabilities. After discussing the occurrence of higher-order VHSs on square and kagome lattice models, we perform unbiased renormalization group calculations to study competing instabilities and find a rich phase diagram containing ferromagnetism, antiferromagnetism, superconductivity, and Pomeranchuk orders. Remarkably, there is a generic transition from superconductivity to a d-wave Pomeranchuk order with increasing flavor number. Implications for the intriguing quantum states of AV3Sb5 kagome metals are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据