4.6 Article

Ginzburg-Landau action and polarization current in an excitonic insulator model of electronic ferroelectricity

期刊

PHYSICAL REVIEW B
卷 107, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.155142

关键词

-

向作者/读者索取更多资源

In comparison to transport of spin polarization in ferromagnets, transport of electric polarization in ferroelectrics remains less explored. Taking an excitonic insulator model of electronic ferroelectricity as a prototypical example, we theoretically investigate the low-energy dynamics and transport of electric polarization by microscopically constructing the Ginzburg-Landau action. We show that, because of the scalar nature of the excitonic order parameter, only the longitudinal fluctuations are relevant to the transport of electric polarization. We also formulate the electric-polarization diffusion equation, in which the electric-polarization current is defined purely electronically without recourse to the lattice degrees of freedom.
In comparison to transport of spin polarization in ferromagnets, transport of electric polarization in ferro-electrics remains less explored. Taking an excitonic insulator model of electronic ferroelectricity as a prototypical example, we theoretically investigate the low-energy dynamics and transport of electric polarization by micro-scopically constructing the Ginzburg-Landau action. We show that, because of the scalar nature of the excitonic order parameter, only the longitudinal fluctuations are relevant to the transport of electric polarization. We also formulate the electric-polarization diffusion equation, in which the electric-polarization current is defined purely electronically without recourse to the lattice degrees of freedom.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据