4.7 Article

Implementation of threshold- and memory-switching memristors based on electrochemical metallization in an identical ferroelectric electrolyte

期刊

NPG ASIA MATERIALS
卷 15, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41427-023-00481-0

关键词

-

向作者/读者索取更多资源

In this study, ECM devices with the same ferroelectric PbZr0.52Ti0.48O3 (PZT) electrolyte were developed for neuron and synaptic behavior. The Ag/PZT/LSMO memristor showed abrupt and volatile resistive switching, leading to neuron devices. The Ni/PZT/LSMO memristor exhibited gradual and non-volatile resistive switching, resulting in synaptic devices with desirable properties.
The use of an identical electrolyte in electrochemical metallization (ECM)-based neuron and synaptic devices has not yet been achieved due to their different resistive-switching characteristics. Herein, we describe ECM devices comprising the same ferroelectric PbZr0.52Ti0.48O3 (PZT) electrolyte, which can sustain both neuron and synaptic behavior depending on the identity of the active electrode. The Ag/PZT/La0.8Sr0.2MnO3 (LSMO) threshold switching memristor shows abrupt and volatile resistive switching characteristics, which lead to neuron devices with stochastic integration-and-fire behavior, auto-recovery, and rapid operation. In contrast, the Ni/PZT/LSMO memory switching memristor exhibits gradual, non-volatile resistive switching behavior, which leads to synaptic devices with a high on/off ratio, low on-state current, low variability, and spike-timing-dependent plasticity (STDP). The divergent behavior of the ECM devices is attributed to greater control of cation migration through the ultrathin ferroelectric PZT. Thus, ECM devices with an identical ferroelectric electrolyte offer promise as essential building blocks in the construction of high-performance neuromorphic computing systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据