4.6 Article

Signatures of non-Markovianity of a superconducting qubit

期刊

PHYSICAL REVIEW B
卷 107, 期 17, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.107.174511

关键词

-

向作者/读者索取更多资源

We describe temporally correlated noise processes that influence the idle evolution of a superconducting transmon qubit. Based on quantum circuit theory, we model the composite qubit-environment system and derive a circuit Hamiltonian for transverse noise affecting the qubit. Using the time-convolutionless projection operator method, we construct a time-local master equation that exhibits eternally non-Markovian dynamics. By expressing the solution of the master equation in the Kraus representation, we identify two crucial non-Markovian phenomena: periodic revivals of coherence and the appearance of additional frequencies far from the qubit frequency.
We describe temporally correlated noise processes that influence the idle evolution of a superconducting trans -mon qubit. To model the composite qubit-environment system we use quantum circuit theory, and we show how a circuit Hamiltonian can be derived for transverse noise affecting the qubit. Based on the time-convolutionless projection operator method, we construct a time-local master equation which, when transformed to its canonical Lindblad form, exhibits a decay rate that is negative at all times, corresponding to eternally non-Markovian dynamics. By expressing the solution of the master equation in the Kraus representation, we identify two crucial non-Markovian phenomena: periodic revivals of coherence, and the appearance of additional frequencies far from the qubit frequency in the precession of the qubit state. When a single qubit gate acts on the qubit state, these extra frequency terms rotate undesirably and they effectively act as the memory of the state prior to the rotation around the Bloch sphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据