4.8 Article

Effects of organic matter on the aggregation of anthropogenic microplastic particles in turbulent environments

期刊

WATER RESEARCH
卷 232, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wattes.2023.119706

关键词

Microplastics; Biofilm; Organic matters; Mixing chamber; Population balance model

向作者/读者索取更多资源

This study examines the effects of different organic matter on the flocculation of anthropogenic microplastics and finds that cationic and neutral organic matter have a more significant promoting effect on the growth of microplastic flocs.
Biofilm-coated microplastics are omnipresent in aquatic environments, carrying different organic matter (OM) that in turn influences the flocculation and settling of microplastic aggregates. In this study, the effects of chitosan, guar gum, humic acid, and xanthan gum on the flocculation of anthropogenic microplastics are examined under controlled shear through the mixing chamber experiments. The results show that all of the selected OMs have positive effects on biofilm culturing and thus enhance the growth of microplastic flocs, with more evident promoting effects for cationic and neutral OMs (i.e., chitosan and guar gum) than anionic OMs (i.e., humic acid and xanthan). No critical shear rate is observed in the size vs. shear relationship based on our measurements. In addition, the quadrature-based two-class population balance model is employed to track the development of bimodal floc size distributions (FSDs) composed of small and large microplastic flocs. The model predictions show reasonable agreement with the observed FSDs. The largest error of settling flux from the two-class model is 7.8% in contrast with the reference value measured by the camera-based FSDs with 30 bins. This study highlights the role of different OMs on microplastic flocculation and indicates that a two-class model may be sufficient to describe microplastic transport processes in estuaries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据